Andreas K Braun, Luc van der Sluis

The management of complications related to the mesio-buccal root canal of a maxillary first molar

Key words location, mesio-buccal root, strip perforation

In this case report, the non-surgical retreatment of a maxillary first molar is described. The management of a strip perforation is explained.

Introduction

An untreated infected second mesio-buccal canal is often the cause of treatment failure. Schwarze et al. showed that, with the help of an operating microscope, in 93.7% of the mesio-buccal roots, a second mesio-buccal canal can be located. However, only in 41.3% of these cases was this canal identified using magnifying loupes (2x magnification) instead of an operating microscope, demonstrating the difficulty in locating the second mesio-buccal canal. In a recent review on the anatomy of the maxillary first molar, the incidence of two canals in the mesio-buccal root was found to be higher in the laboratory (60.5%) than in clinical studies (54.7%). When a surgical telescope was used, the incidence of two canals was 96% in the laboratory and 71.2% in clinical studies. In a recent study, a total of 39 endodontically treated maxillary first molars were evaluated using CT scan; 30 out of these 39 mesio-buccal roots had two canals. Of these, 27 were not filled, and 22 roots with an unfilled canal were associated with a periapical lesion.

During a root canal treatment, the design of the access cavity is crucial in aiding canal location. Successful treatment is impossible without an adequate access cavity. This case report demonstrates the outline of the access cavity that is needed to locate the second mesio-buccal root canal.

A strip perforation refers to an excessive thinning of the lateral root wall with possible perforation. It occurs mainly in mesial-buccal roots of maxillary molars or mesial roots of mandibular molars because more root dentine is present in the mesial compared with the distal (furcal) area (Figs 1 and 2).

In this case report, the location of a second mesio-buccal canal and management of a strip perforation is described.

Case report

Diagnosis

A 45-year-old female Caucasian was referred to an endodontist for retreatment of the first maxillary left molar (tooth 26). The tooth had been endodontically treated six years ago and the tooth was restored with
a porcelain bonded to metal crown. At that time, the
diagnosis was a symptomatic irreversible pulpitis. Three
root canals had been located and chemo-mechanical
preparation of these canals had been performed using
rubber dam for tooth isolation. Thereafter, the patient
had been free of symptoms until now.

When the patient presented herself, she was in
severe pain. The tooth was sensitive to percussion. A
diagnostic radiograph showed a radiolucent area
around the mesio-buccal root and in the furcation
area distal to the mesio-buccal root (Fig 3). It was not
possible to probe the furcation. A diagnosis of sym-
ptomatic apical periodontitis was made, which might
be caused by an untreated second mesio-buccal
canal and a strip perforation in the mesio-buccal root.

Treatment

Since only the mesio-buccal root showed signs of pe-
riapical pathology and the crown had good marginal
adaptation, it was decided to only retreat the mesio-

Fig 1 Cross section of the mesial root of a lower molar before preparation. Note the difference in the amount of dentine on the mesial and distal aspect of the root.

Fig 2 Cross section of the same mesial root shown in Fig 1, after preparation that caused a thinning of the distal aspect of the root.

Fig 3 Diagnostic radiograph of tooth 26 before retreatment.
a 2% solution of NaOCl using a passive ultrasonic activation for 3 minutes. No intracanal dressing with Ca(OH)₂ was used because there is no scientific evidence that this should result in a more efficient disinfection control of the root canal system or a higher success rate.\(^7\)

The root canals were dried with paper points (Dentsply Maillefer) and filled with gutta-percha (Dentsply Maillefer) and AH 26 sealer (Dentsply De Trey, Konstanz, Germany). The apical part of this canal was filled using a cold lateral compaction technique. Both the mesio-buccal canals fused in the apical area.

The gutta-percha cones were sheared off at approximately 3 mm short of the working length with a warm spreader (System B, Sybron Endo Corp., West Collins, USA), and vertically compacted. Thereafter, the canals were filled with a warm vertical compaction technique using thermoplasticised gutta-percha (Obtura II, Spartan Corp., Fenton, USA). The first mesio-buccal canal was filled to the strip perforation. The orifice of the first mesio-buccal canal was flushed with a 2% NaOCl solution to remove remnants of AH 26 and then mineral trioxide aggregate (MTA, ProRoot, Dentsply, Konstanz, Germany) was placed on the cleaned and disinfected perforation (Fig 7). To ensure complete setting of the MTA, it was covered with a layer of calcium hydroxide (UltraCal XS, Ultradent Products Inc., South Jordan, USA) and the access cavity was temporarily filled with Cavit (3M Espe, Seefeld, Germany) and Fuji II (Fuji GC Company, Tokyo, Japan).

A post-treatment radiograph was taken (Fig 8). The patient was referred to her own dentist for a definitive coronal restoration.
Results

After 34 months, the patient was recalled. The patient was symptom-free. The tooth was not tender to percussion or palpation, and no fistula or sinus tract were present. A radiograph showed a normal, but slightly widened periodontal ligament (Fig 9).

Discussion

Failure due to infection related to the mesio-buccal root of an endodontically treated maxillary first molar is often associated with an untreated second mesio-buccal canal because this additional canal is often difficult to locate. When diagnosed with a CT scan, 22 out of 27 unfilled root canals were associated with a periradicular lesion, indicating apical pathology. Although the second mesio-buccal canal is difficult to locate, it is important for successful treatment outcome. The surgical microscope can offer some help in locating this elusive canal.

When mesial-buccal roots of maxillary molars or mesial roots of mandibular molars are endodontically treated, care must be taken during the instrumentation to avoid a strip perforation. An adequate access cavity can help instrumentation and minimise this procedural error. The access cavity must be located towards the mesial aspect of these canals where the bulk of dentine is located. Furthermore, the opening of the orifice of the root canal should be situated towards the mesial aspect of the root canal to prevent strip perforation, because this will keep the files in the right position of the root canal.

Although it was possible to endodontically treat this molar, given the strip perforation the prognosis of this tooth is reduced.

Conclusions

When treating a mesio-buccal root of a maxillary molar it is often difficult to locate the second mesio-buccal canal; however, it is important to try to locate this because it could negatively influence the prognosis of the endodontic treatment.

References